Prior thorium-fuelled electricity generation

There have been several significant demonstrations of the use of thorium-based fuels to generate electricity in several reactor types. Many of these early trials were able to use high-enriched uranium (HEU) as the fissile ‘driver’ component, and this would not be considered today.

The 300 MWe Thorium High Temperature Reactor (THTR) at Hamm-Uentrop in Germany operated with thorium-HEU fuel between 1983 and 1989, when it was shut down due to technical problems. Over half of its 674,000 pebbles contained Th-HEU fuel particles (the rest comprised graphite moderator and some neutron absorbers). These were continuously moved through the reactor as it operated, and on average each fuel pebble passed six times through the core.

The 40 MWe Peach Bottom HTR in the USA was a demonstration thorium-fuelled reactor that ran from 1967-74.2 It used a thorium-HEU fuel in the form of microspheres of mixed thorium-uranium carbide coated with pyrolytic carbon. These were embedded in annular graphite segments (not pebbles). This reactor produced 33 billion kWh over 1349 equivalent full-power days with a capacity factor of 74%.

The 330 MWe Fort St Vrain HTR in Colorado, USA, was a larger-scale commercial successor to the Peach Bottom reactor and ran from 1976-89. It also used thorium-HEU fuel in the form of microspheres of mixed thorium-uranium carbide coated with silicon oxide and pyrolytic carbon to retain fission products. These were embedded in graphite ‘compacts’ that were arranged in hexagonal columns (‘prisms’). Almost 25 tonnes of thorium was used in fuel for the reactor, much of which attained a burn-up of about 170 GWd/t.

A unique thorium-fuelled light water breeder reactor operated from 1977 to 1982 at Shippingport in the USA3 – it used uranium-233 as the fissile driver in special fuel assemblies that had movable ‘seed’ regions which allowed the level of neutron moderation to be gradually increased as the fuel agede. The reactor core was housed in a reconfigured early PWR. It operated with a power output of 60 MWe (236 MWt) and an availability factor of 86% producing over 2.1 billion kWh. Post-operation inspections revealed that 1.39% more fissile fuel was present at the end of core life, proving that breeding had occurred. A 2007 NRC report quotes a breeding ratio of 1.01. Chemically reprocessing the fuel was not attempted.

Indian heavy water reactors (PHWRs) have for a long time used thorium-bearing fuel bundles for power flattening in some fuel channels – especially in initial cores when special reactivity control measures are needed.

Source World Nuclear

Leave a Reply

Your email address will not be published. Required fields are marked *